Optimal specific wavelength for maximum thrust production in undulatory propulsion

نویسندگان

  • Nishant Nangia
  • Rahul Bale
  • Nelson Chen
  • Yohanna Hanna
  • Neelesh A. Patankar
چکیده

What wavelengths do undulatory swimmers use during propulsion? In this work we find that a wide range of body/caudal fin (BCF) swimmers, from larval zebrafish and herring to fully-grown eels, use specific wavelength (ratio of wavelength to tail amplitude of undulation) values that fall within a relatively narrow range. The possible emergence of this constraint is interrogated using numerical simulations of fluid-structure interaction. Based on these, it was found that there is an optimal specific wavelength (OSW) that maximizes the swimming speed and thrust generated by an undulatory swimmer. The observed values of specific wavelength for BCF animals are relatively close to this OSW. The mechanisms underlying the maximum propulsive thrust for BCF swimmers are quantified and are found to be consistent with the mechanisms hypothesized in prior work. The adherence to an optimal value of specific wavelength in most natural hydrodynamic propulsors gives rise to empirical design criteria for man-made propulsors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.

Undulatory motion of the body is the dominant mode of locomotion in fishes, and numerous studies of body kinematics and muscle activity patterns have provided insights into the mechanics of swimming. However, it has not been possible to investigate how key parameters such as the extent of bilateral muscle activation affect propulsive performance due to the inability to manipulate muscle activat...

متن کامل

The hydrodynamics of ribbon-fin propulsion during impulsive motion.

Weakly electric fish are extraordinarily maneuverable swimmers, able to swim as easily forward as backward and rapidly switch swim direction, among other maneuvers. The primary propulsor of gymnotid electric fish is an elongated ribbon-like anal fin. To understand the mechanical basis of their maneuverability, we examine the hydrodynamics of a non-translating ribbon fin in stationary water usin...

متن کامل

Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.

An undulatory pattern of body bending in which waves pass along the body from head to tail is a major mechanism of creating thrust in many fish species during steady locomotion. Analyses of live fish swimming have provided the foundation of our current understanding of undulatory locomotion, but our inability to experimentally manipulate key variables such as body length, flexural stiffness and...

متن کامل

Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans

Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using (i) approximate resistive force theory (RFT) assuming a local nature of hydrodynamic interaction between the filament and the surrounding viscous liq...

متن کامل

Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion.

Undulatory locomotion is common to nematodes as well as to limbless vertebrates, but its control is not understood in spite of the identification of hundred of genes involved in Caenorhabditis elegans locomotion. To reveal the mechanisms of nematode undulatory locomotion, we quantitatively analysed the movement of C. elegans with genetic perturbations to neurons, muscles, and skeleton (cuticle)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017